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Density-functional formalism is applied to study the phase equilibria in the U–Zr system. The obtained
ground-state properties of the c (bcc) and d (C32) phases are in good agreement with experimental data.
The decomposition curve for the c-based U–Zr solutions is calculated. We argue that stabilization of the
d-UZr2 phase relative to the a-Zr (hcp) structure is due to an increase of the Zr d-band occupancy that
occurs when U is alloyed with Zr.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Zr-based actinide alloys, particularly U–Pu–Zr, proved to be
very promising fuels for liquid metal fast breeder reactors because
of their advantage in view of superior performance, reactor safety,
and fuel cycle economics [1]. The main goal of fast breeder reactors
is to achieve a so-called ‘high burn-up’ fissioning all types of trans-
uranic elements thus providing an appropriate solution to spent
fuel recycling and complete transmutation of long-lived minor
actinides (Np, Am, and Cm) [2].

It was established [3] that the U–Zr system is characterized by
the complete solubility of the body centered cubic high-tempera-
ture phases, c-U and b-Zr, that is usually referred to in phase dia-
grams by ‘c-phase’ solid solutions. Below T � 995 K, these
solutions separate into a relatively flat miscibility gap, which
ranges from 10 to 40 at.% of Zr, and spans about 30 K below the
critical point. The intermediate d-phase is formed on cooling from
the c-phase around UZr2 stoichiometry with the homogeneity
range from 63 to 82 at.% Zr [4].

The c-U–Zr phase plays an important role in metallurgical reac-
tions that occur during the nuclear burn-up [5–7]. That is why in
this paper we present results of ab initio calculations of the decom-
position curve for the c-U–Zr alloys. Another remarkable feature is
the d-UZr2 phase, which solidifies in a modified C32 (AlB2)-type
structure. It is well known that the high-temperature Zr-based so-
lid solutions may transform into the so-called metastable x-phase
at low temperatures [8], which can also be stabilized from the a
(hcp) phase of Zr under compression [8,9]. According to X-ray
and neutron diffraction analysis of the UZr2 compound [4,10], Zr
atom occupies the ‘Al’ position of the hexagonal cell and a random
mixture of U and Zr atoms occupies the ‘B’ positions. Ogawa et al.
ll rights reserved.

: +1 925 422 2851.
[11] suggested that the d-UZr2 phase could be regarded as the x-
phase solid solution that is stabilized against the a-Zr (hcp) struc-
ture by addition of U due to increase of Zr d-band occupancy. Here
we present results of calculations verifying the hypothesis [11] for
the d-UZr2 stabilization.

In our calculations we employ three complementary computa-
tional techniques: (i) scalar-relativistic Green’s function technique
based on the Korringa–Kohn–Rostoker (KKR) method within the
atomic-sphere approximation (ASA), (ii) the scalar-relativistic ex-
act muffin-tin orbital method (EMTO), and (iii) the all-electron
full-potential linear muffin-tin orbital method (FPLMTO) that ac-
counts for all relativistic effects.

2. Computational details

The calculations we have referred to as KKR–ASA are performed
using the scalar-relativistic Green’s function technique based on
the KKR method within the atomic-sphere approximation [12–
15]. For the electron exchange and correlation energy functional,
the generalized gradient approximation (GGA) is adopted [16].
Integration over the Brillouin zone is performed using the special
k-point technique [17]. The equilibrium density of the U–Zr system
is obtained from a Murnaghan [18] fit.

In order to treat compositional disorder the KKR–ASA method is
combined with the coherent potential approximation (CPA) [19].
The ground-state properties of the random U–Zr alloys are ob-
tained from KKR–ASA–CPA calculations with the Coulomb screen-
ing potential and energy [20–22]. The screening constants are
determined from supercell calculations using the locally self-con-
sistent Green’s function method [23]. The effective cluster interac-
tions, used in Monte Carlo (MC) simulations, are obtained from the
screened generalized-perturbation method [20,21,24].

Though the KKR–ASA formalism is well suited to treat close-
packed structures it could produce a significant error when being
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Fig. 2. Temperature of decomposition of the c-U–Zr alloys. Experimental data on
the miscibility gap are taken from Ref. [32].
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applied to ‘open’ structures, e.g., C32. That is why we use a Green’s
function technique, based on the EMTO formalism, in present cal-
culations, which is not limited by geometrical restrictions imposed
by the ASA.

The EMTO calculations are performed using scalar-relativistic
Green’s function technique based on the improved screened KKR
method [25,26]. The total energy is obtained from the full
charge-density technique [27] and GGA is used for the electron ex-
change and correlation approximation. EMTO is combined with the
CPA for calculation of the total energy of chemically random alloy.

For the elemental metals, the most accurate and fully relativis-
tic calculations are performed using an all-electron approach
where the relativistic effects, including spin-orbit coupling, are ac-
counted for. Although unable to model disorder in the CPA sense it
provides important information for the metals, and also serves to
confirm the CPA calculations mentioned above. For this purpose
we use a version of the FPLMTO [28]. As in the case of the KKR–
ASA and EMTO methods, GGA is used for the electron exchange-
correlation approximation. A special quasi-random structure
(SQS) method was used to treat the compositional disorder within
the FPLMTO formalism [29].

3. Ground-state properties and decomposition curve of the
c-U–Zr solid solutions

Fig. 1 shows the results of KKR–ASA–CPA calculations of the
heat of formation of the c-U–Zr solid solutions at T = 0 K. The heat
of formation shows a positive deviation from the Vegard’s law that
agrees well with the existence of a miscibility gap in the U–Zr
phase diagram. Notice that the calculated heat of formation of
the c-U–Zr solid solutions is in excellent agreement with data ex-
tracted from the experimental phase diagram by the use of CALP-
HAD methodology [30], which suggests a robustness of the ab
initio approach. For comparison, we also show the heats of forma-
tion for the U75Zr25, U50Zr50, and U25Zr75 bcc alloys calculated with-
in the FPLMTO–SQS technique.

We performed MC calculations of the decomposition curve for
the c-U–Zr solid solutions. The MC simulations are performed
using the Metropolis algorithm [31] for a 1728-site simulation
box (12 � 12 � 12) with periodic boundary conditions. Fig. 2 dis-
plays the calculated temperature of decomposition of the c-U1�cZrc
Fig. 1. The heat of formation of the c-U–Zr alloys (T = 0 K).
alloys within the wide range of composition. This curve has a max-
imum that is located somewhere between 20 and 30 at.% of Zr. This
maximum matches relatively well the location of the maximum on
the experimental miscibility gap (�30 at.% Zr) also shown in the
figure.

4. Ground-state properties of the d-UZr2 compound

The C32 (AlB2) structure has two non-equivalent types of sub-
lattice with three atoms per unit cell: sublattices of ‘Al-’ (one site)
and ‘B-’ (two sites) types. It is believed that in the d-UZr2 com-
pound Zr atoms occupy the Al-type position (0, 0, 0) of the hexag-
onal cell, and a random mixture of U and Zr atoms occupies the B-
type positions (2/3, 1/3, 1/2) and (1/3, 2/3, 1/2). To confirm that
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Fig. 3. The total energy of the d-UZr2 compound for (i)–(iii) configurations (see text)
as a function of the Wigner–Seitz radius. The equilibrium energy of the ‘partially’
order configuration (iii) is used as the reference point and is set equal to zero.
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this arrangement is the ground-state configuration of the d-UZr2

compound, we performed EMTO calculations of the equilibrium
lattice constant for three atomic configurations of the C32 struc-
ture: (i) random distribution of U and Zr atoms on each of the three
sites (the U1/3Zr2/3 ‘disordered’ alloy); (ii) ‘complete’ ordering with
U atoms occupying the Al-type sublattice and Zr atoms occupying
the B-type sublattice; (iii) ‘partial’ ordering that corresponds to
experimental observation described in Section 1. Fig. 3 shows the
total energy of the d-UZr2 compound as a function of the Wig-
ner–Seitz radius. One can see that two types of ordering, ‘complete’
and ‘partial’, are energetically favorable in comparison with the
disordered configuration, however, the configuration (iii) is one
that has the lowest total energy. We have also calculated the en-
thalpy of formation ðEC32

UZr2
Þ of the d-UZr2 compound. Present calcu-
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Fig. 4. The change in band occupations in a-Zr under compression (a): the energy
difference obtained from canonical d-bands calculations as a function of d-band
occupancy (b): the hcp phase is used as the reference point and is set equal to zero.
lations reveal EC32
UZr2

= �6.29 kJ/mol that is in fair agreement with
experimental measurements of �4.0 kJ/mol at T = 298 K [33,34].

5. Stability of the d-phase in the U–Zr system

It is well established that under compression zirconium metal
undergoes the following phase transformations: a-Zr (hcp) ? x-
Zr (C32) ? b-Zr (bcc) [8,9,35–37]. According to the present
FPLMTO calculations, the a ? x and x ? b phase transitions in
Zr take place at 33 and 268 kbar, respectively, which are in a good
accord with experimental measurements [8,9,35–37].

Fig. 4(a) shows results of FPLMTO calculations of the s-, p-, and
d-band occupations in a-Zr as a function of the Wigner–Seitz ra-
dius (pressure). As pressure increases, the occupation of the d-band
goes up due to a loss of the s- and p-band electrons. In Fig. 4(b) we
show the structural-energy difference obtained from canonical
bands [38] as a function of d-band filling. One can see that as the
d-band occupation increases under compression, hcp transforms
to C32 and then to bcc.

Next, we discuss the analogies with the U–Zr system. Fig. 5 has
two parts. The upper part shows how the d-band occupation of a-
Zr changes under compression and the transition region (full black)
spans between the lower and upper experimental bounds, 21 and
85 kbar [8,37], of the a ? x transformation. The hatched patch of
the upper part of the plot shows the pressure region of the certain
x-phase stability in pure Zr. The lower part of this plot shows how
the d-band occupation changes as a function of an increase in U
composition in the U–Zr system. The hatched part of this part of
the plot spans within the range of the homogeneity of the d-U–Zr
phase (18–37 at.% U [4]). One can see that at the upper pressure
border of the a ? x phase transition range in pure Zr (�85 kbar)
its d-occupation almost reaches the same value as it has when
composition of U, alloyed with a-Zr, reaches the value (�18 at.%,
[4]) when the d-UZr2 phase starts to form. Thus the present calcu-
lations confirm the hypothesis [11] that stabilization of the d-UZr2
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phase has the same origin as that of the x-phase in pure Zr under
compression, namely, it is induced by an increase in d-band filling.

6. Conclusion

In the present paper ab initio results are obtained for U–Zr alloys
to understand the effectiveness of first-principles methods in
describing actinide alloys. Ground-state properties of the c-U-Z so-
lid solutions and d-UZr2 compound were calculated. Predicted tem-
perature of decomposition of the c-U–Zr alloys is in a reasonable
agreement with the c-phase miscibility gap. Stabilization of the
d-UZr2 phase is explained in terms of an increase in d-band occu-
pancy by the addition of U to Zr.
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